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FORCED SUBHARMONIC OSCILLATIONS OF THE SIMPLE PENDULUM* 

V.A. ZLATOUSTOV, V.V. SAZONOV and V.A. SARYCRRV 

Symmetric subharmonic solutions of second order differential equation definingoscil- 
lations of the simple pendulum subjected to an external sinusoidal force are con- 
sidered. In the case of small amplitude of the exciting force the subharmonic 
solutions are analytically determined and then continued in the domain of large 
amplitudes of that force, using numerical computations. Branching of derived solu- 
tions is investigated. 

1. Introduction. Let us 

where x is the unknown function, 

consider the differential equation 

x" + p sin x = e sin t (1.1) 

t is the independent variable , and e and p are: parameters. 
Periodicsolutionsof this equation which for c = 0 is the same as the periodic solutions or 
the respective homogeneous equation were sought in /l/, where the obtained solutions were 
denoted by x2 (t, e), x$& (t, e), X!& (t, e) . The solution 2, (t,e) is of period 2% exists when 
I e I < 1, p # n” (n = 1, 3, 5, . . .) , and satisfies the condition xz (t,O)= 0. In z!& (t, 4, EsJm (t, e) 

in and A are relatively prime positive integers, with one of these nlrmbers in 
r = 0, 1, . . ., 2m (r' - 1. Solutions G!~, Xglm 

X$jm is even, 
are of period %rm, are determinate when lel<k 

p> n~/ma,andcoincidewith%~/n-periodiCSolUtiOnSofthe~eneous equation when e = 0. 
Solutions x,, x$& x:/m depend analytically on e in the neighborhood of point e = 0. 

The numerical derivation of solution xz reduces to the solution for Rg.(l.l) of the 
boundary value problem 

x(o)=x~(+o (1.2) 

The derivation of solutions xt?,,, reduces to solving the boundary value problem 

(1.3) 

when m and n are odd numbers, and when one of these is even, to solving the boundary value 
problem 

x (0) = 5 (nm) = 0 (1.41 

The derivation of solutions x&J,,, reduces to solving the boundary value problem 

x'(+)=x'(++fim)=U (1.51 

The solution of the boundary value problem can be defined as the surface S 
R" (x'(O), e, p) or as surface S’ In space Ro(x(&), e, p). 

in space 
Surfaces S and S' arediffeomorphic. 

We define thy solutions of boundary value problems (1.3)-(1.5) as surfaces 
e, p) and Sm;mC R'(x(n/2), e, P), respectively. When n is odd, then &,C S. 

&J, c Ro(x. (O), 
Propertles of 

surfaces S, &;s, &a1 were Investigated in /l/, where surfaces S',&,J, Sylf were denoted, re- 
spectively, by S, S',S'. Rere we consider surfaces S,,,,,, and S& wfth m> i. These sur- 
faces define the dependence of symaetric subharmonic forced oscillations of the simple pendul- 
um on parsmeters e and p. According to /l/ it is sufficient to investigate these surfaces 
for e>O. 

2. Resonance curves. 
(1.2). Then /l/ 

Let x(t) be a solution of the boundary value problem (1.11, 

z(4) = --5 (t), x (t + 3%) = -x (t) 

Consider the respective equation in variations 

(2.1) 

-__.__ 
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y” + py co.5 5 (t) = 0 (2.2) 

where by virtue of (2.1) 00sz(t) is an even m -periodic function. Let Yl (t), YZ (t) be solu- 
tions of (2.2) with initial conditions Y, (0) r= y,’ (Cl) = 1, Y,' (0) =- Y$ (0) = 0. Then y', (t) is an 
even, and Y*(t) an odd function. Because of this and the relation (Liouville's theorem) 

(2.3) ,,(~),a-(+~;(+h(+)=1 

the monodromy matrix of Eq. (2.2) 

(:= YlW Ya(n) ’ 

I Y,’ (4 Yz’ (4 I/ 

can be represented as follows: 

C= 

I 

Yl(;)Yz.(q) -t,1*(+)ya($) %($)Y,. ii) 

characteristic equation for (2.2) is of the form p2 - 2Ap -+ 1 = 0, where 

(2.4) 

When IA while when 

IAl> it is unstable. Boundaries of the stability domain are curves on surface s deter- 
mined by the equations A = 1 and A = -1. When A 

consequently, if Y,' (n/2) L 0, function Y, (t)has that prop- 
erty. Curves A = -1 can be of two types, viz. r2+ and rz-. cm curve rz+ (r,-) Eq. (2.2) 
has an even (odd) n-antiperiodic solution. The results of computations of curves r,,,* (m =_ 

1,2) appear in /l/. 
Let IA I< 1. We determine o using the condition A =GOSTC~J. Then by virtue of rela- 

tions (2.3) and (2.4) it is possible to represent matrix c as (cf. /2/) 

I cos no 
C= 

$ sin zoJ 

-0sinno cos 11(l) I 

where a+0 is some number. Consider solutions ml (t) = Y, ($ UP (t) = 0Y, (t) of Eq.(2.2). It 
can be shown that 

Ur (t) =+I (t) 00s ot --& (t)sin ot, u2 (t) = & (t) sin 0 t + qe (t) cos0~t (2.5) 

where +1(t) is an even and $2 (t) an odd n -periodic function. 
Assume that mis a positive integer and consider curves rrnC s on which Eq.(2.2) has 

nontrivial periodic solutions with the lowest period am. Such curves are called resonance 
curves of the m-th order. When m = i,2, then rm = rm+ u rm-. When m> 2, the reson- 
ance curves are determined by formulas cos nmw=1,cosnko#l (k = I,..., m - I), by virtue 

of which 0 -= 2nlm, where n is an integer relatively prime to m. It follows from (2.5) 

that all solutions of Eq.(2.2) along curves r,,, are nm -periodic when m > 2. 
Numerical computation of curves r,,, for m> 2 reduces to solving the boundary value 

problem (1.2) and A = cos 2nnim for the system consisting of Eq.(l.l) and two Eqs.(2.2),with 
A determined by formula (2.4). There exist other methods of constructing resonance curves, 
for example, the boundary value problem (1.2) Y (0) = y @m/Z) = 0 I can be solved for system 
(l.l), (2.2). However the method described here requires less computer time. 

We denote the projection of curve r,,, on the (e, p) -plane by L. Some of the Ym curv- 
es are shown in Fig.1. 
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solutions of the second kind. According to /2/ curves Yn, can be 
mnz -periodic (when IIZ is even) and 2m -periodic (when sn is odd) of solu- 

, when m; 2 such solutions are called periodic solutions of the second 
kind /2/. For the investigation of these solutions we carry out the following tranSfOYm?it- 

ions. Let (eel P+)E Y,,, and 3 (t) be the solution of the boundary value problem (l-2), (z; (O), 

% P.) E rm, corresponding to point (e+, h). Then, using the notation 

q=x - 5 (t), e=e-ee,, iS=p- lb f (t) = Pl# co6 x* (t) 

R (q, t, e, 6) = e sin t + h sin xs (t) + f (t)q - (k + 4 Sin [% (t) + 4 

we can write Eq.tl.1) as 

where 

4" + f (t)q = H (q, t, e, 8) (3.1) 

f (t + m) = f(t)* H (g, t + R, e, 6) = -Zi(-q, t, e, 8) (3.2) 

f (t) = f (-th H (a t, e, 8) = -H (-a, -t, e, 8) (3.3) 

Function H(q,t,p,6) is analytic with respect to q,e,6 at point q=e= 8=0, and 
H(q,t,e, 8)= O($ + 1 e I+ 18 I). The investigation of peroidic solutions of Bq.(l.l) that co- 
incide with the solution z*(t) when e =e,, p = p* is equivalent to the investigation of per- 
iodic solutions of Eq.(3.1) which vanish for e = 8 = 0. 

Equation (3.1) on curves rl was considered in /l/. The investigation carried out there 
made possible a more precise determination of surfaces S, Srll and s', &'. Analysis of Eq. 
(3.1) on curves I?,- (curves rs+ were not disclosed) provides the possibility of investiga- 
ting surface S. Such investigation yields results that are similar tothose in /3/. Below, 
we consider Eq.(3.1) along curves I',,, when m> 2. 

bet m> 2. be an integer. Let us investigate branching of the 2nm-periodic solutions 
of F+q.(3.1) along curves y,,,, and Ym (curves y,,, are considered only for odd m 1. Along 
these curves the linearly independent solutions of equation q..+f(t)q=O (cf. (2.2)) can 
be taken in the form (2.5), where m = n/m and n is a positive integer relatively prime to 
m. Along curves I'm the number n must be even. Consider the auxilliary system 

d’ + f Ok = H (qI t, 8, 8) - WI 0) - PA 0) 
nm um 

s m(t) dt = 111, s qua 0) df = ua 
0 0 

where q is the unknown function, p1 and pn are unknown constants, and ~1 
rary constants. When IQL lapIt lel, 181 are fairly small, this system has 
periodic in t solution /4,S/ 

g = g+ (t. a~, a,, e, 8), PI = PI* (a,, aa, e, 8) V = 1, 2) 

and a, are arbit- 
a unique 2m- 

(3.4) 

which analytically depends on al, a*, e, 8 and satisfies the conditions Q, (G 0, 0, 0, 0) = 0, pl* (0, 
0, 0, 0) = 0. The derivation of ti-periodic solutions of Eq. (3.1) that vanish when e = 8 
= Ois equivalent to the determination of roots al = ai(e, 8)(j = 1,2) of system 

PI* (al, %, a, 8) = 0, ps* (a,, %, e, 8) = 0 (3.5) 

such that a1(0, 0) = 0. Let a)(e,d) be the roots of that system, and af(O,O) = 0. !l%enq= 
q,kal(e, 81, %(e, 81, e,61 is a 2scm -periodic solution of ~q.(3.1), whose characteristic in- 
dices I. are of the form 

XL&&- "&:: $' [al@, 8), a~@, a), e, 8](1 -i o (1)) 

M=~~la(t)dt=~u,‘(t)dt=naj[~I(f)T*.(t)ldt 
0 0 0 

w= ulua'-z4~'l4%=C011st 

where W is the Wronskian of functions (2.51, and o(1) denotes the function of e and 8 
which approaches zero as e+O, 8-r-O. 

Let us point out some of the properties of solution (3.4). Using formulas (3.3) and 
the evenness of functions r(t) and u*(t) it is possible to prove that 
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By virtue of (2.5) and (3.2) for any integral k we have 

qz+z (t + nk, a, B) = (-I)%* (t, Q%, B), P* (Qnh', B) = Q"‘p, (a, B) (3.7) 

We pass to the investigation of system (3.5). It follows from (3.7) that Qp*(O, p)= 
P* (0, B) and, since unity is not an eigenvalue of matrix Q, P* (0, fi) = 0. Thus q* k 0, P) 
(cf. (3.6)) is an odd n -antiperiodic (cf. (3.7)) solution of Eq.(3.1), which satisfies the 
condition (x*'(O) + q*' (O,O, 8)9 e, + EY P* -i- @ES. The investigated curve Ym or %m in the 
(&,6) -plane is defined by the equation 

Let b(~, 6) be a root of the equation 

pz* (0. b, E, 6) = 0 (3.8) 

which is not identically zero and satisfies the condition b(O,O) = 0. We introduce the nota- 
tions: a@) (fi? = (0, b (E, 6))T, 

P* [a() (B), fJ1 = 0 . 
a@) (8) r= @u(u) (fi) (k = 1, 2, . .). 'Then, by virtue of (3.6) and 

i3.7) Matrix Q”” is an unit matrix, hence among vectors a(")(@) (k = 0, 
, . ..) there are not more than 2m different ones. If a(")(@) = u(l)(p), then cos IR (m + n) 

(k - l)/m] = 1 or,;:;; is the same, (m + n) (k - 1) s 0 (mod 2m). Since m and n are relatively 
prime integers, and m are also relatively prime. Consequently h_ - 1 -= rm, where 
r (m + n) s 0 (mod 2). 

Let m and n be odd. Then m + n is even and k = 1 (mod m) . In this case there are 
only m different (for instance, a'?"' (fi). k == 0, 1, ., m - 1) vectors among a(') (p) (k = 0, 1, .) 
If one of the numbers m and n is even (the other is odd by virtue of primality of m and n 
then m-t r~ is odd and kz 2. (mod 2n2). In this case there are 2m different vectors (for in- 

stance, cP) (fi), k-=0,1 ,..., 2m-1) among a(“) (fJ) (k = 0, 1, . ..). The first of these cases 
is only possible on curves Yzmr while the second is possible on curves Yzm (m even, n odd), 
as well as on curves Y,,, (m odd, n even). 

The 2nm -periodic solutions of Eq.(l.l), x(k) (1) 7 .L’* (1) t- qe It, a@) @), fi] (k -= 0, 1, . .) 
correspond to roots a(* system (3.5). Solution 39 (t) is odd.and satisfies boundary 

conditions (1.4). The remaining solutions are related to z(O)(t) by formula d'"'(t) = (--1)“.zP) 
(t + nk). If either m or n is even, then among solutions z(k) (t)(k = 0,1, . ..) 2m are differ- 
ent, when both are odd, there are only m different solutions: In the latter case solutions 

~9) (t) (k = 0, 1, . . .) are arm-antiperiodic and solution #'1(t) satisfies the boundary condi- 

tions (1.3). 
Let us consider in detail the case when one of the numbers m and a is even. Then (-Q”) 

is an unit matrix, and when k = m the second of formuls (3.7) assumes the form ~*(--a, 6) = 

-P* (% B). Comparing this formula with (3.6) we find that 

Pj*($, a21 E, 6) = Ujqj (ala, Us’, E, 6) (j = 1, 2) (3.9) 

where (P~(z~,z~,E, 6) are analytic functions of ZlrZl,e,6 at point 21 = z2 = e=&=O, and 

'p, (0, 0, 0, 0) = 0. when b#O, Eq.(3.8) assumes by virtue of (3.9) the form 

'pz (0, ba, e, 6) = 0 (3.10) 

Consider now the equation 

'PI (ba, 0, E, 6) = 0 (3.11) 

Let b(e,@ be its root that is not identically zero and satisfies the condition b(O,O) 
= 0. We introduce vectors (z(O) (fi) = (b (E, 6), O)T, a(k) (6) = Q's(o) (fi) (k = 1, 2, . . .). It is pos- 

sible to show that p* [ii(‘) (8)s p1 = 0 and that among vectors 6(k) (p) (k = 0, 1, . ., 2m - 1) 
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none are the sane. To rcots 6P)(@) of system (3.5) correspond 2nm -periodic solutions of 

lzq.(l.l), ZCU (t) = z*(t) + q*[[t,P) (fl), i31' (k = 0, 1, . . .). All these solutions aan be expressed 
in terms of z'@)(t) by using formula 2(") (t) = (-+2(O) (t + nk) , and there are only 2m dif- 

ferentones among them. 
If n is even, the totality of solutions {N (t): k = 0, 1, . ..) and (@(t) :k = 0, 1, . . .) 

do not intersect for any selection of Eqs.(3.10) and (3.11) that generate these roots. Solu- 
tion Z(‘) (t), where s = (m-l)/ 2 (mod 2m), satisfies the boundary conditions (1.5). 

When m is even 

(3.12) 

from which by virtue of formulas (3.7) with k=m/2 and (3.9) we have 

'pl h 6 ev 4 = 'p, (h, 21, 8, 6) 
(3.13) 

Hence Eqs.(3.10) and (3.11) are equivalent. Let b(e,8) be a root of these equations 

such that b (0, 0) - 0. Then by virtue of (3.12) the set of solutions {Z(*)(t): k= O,i, . ..) 
and {@(b): k = 0, 1, . ..} that correspond to that root are the same. 

Consider the equation 

when m is even. 

'PI (be', bra, 8, 6) -0 (3.14) 

Let b,(e,6) be its root that is not identically zero and satisfies the condition b,(O, 
0) = 0, a.(O) (IV = (b, (8, 6), b+ (8, WT. aJL’(p) = Q%,(O) (p) (k = 1, 2, . . .). Then P* W) (B), 

PI - 0, andamongvectors a*@)(fl) (k = O,l, . ..) 2m are different. To these vectors correspond 
2zun -periodic solutions of Eq.tl.1) for which 

9'(t) = (--1)'rJO) (t + nk). 
s,(*) (t) = z* (t) + q* k Q")(B), PI (k-0, l,...) 

If me 2 (mod 4), the sets (z") (t): k = 0, 1, . . .} and {z&') (t) : k r= 0, 1, . . .} are differ- 
ent for any selection of Eqs. (3.10) and (3.14) which generate their roots. Solution zrP)(t), 
where 

8 = (-i)(n-l)/s m / 4 - I/% (mod 2m) 

satisfies the boundary conditions (1.5). 
When m E 0 (mod 4), then Q""/* (0, b)T = (b,, bJT for any b and b* linked by the relation 

b’ = Zb,‘. Thus, when b,fe,fl) is the root of Eq.(3.14), b (e, 6) = be (e, S)l/s is by virtue 
of (3.71, (3.91, and (3.131, the root of Eqs.(3.10) and (3.11). The sets of solutions {&(t): 
k = 0, 1, . . .} and {z+") (t) : k = 0, i, ..a} which correspond to these roots are the same. 

We point out one more property of functions 'p1 and (P,, which will be applied below. 
Using (3.7) it is possible to prove that when mn is even and m> 3 

‘PI $4 0, 8, 6) = CPI (0, 0, e, 6) (3.15) 

a'& (0, 0, E, 8) 
azj = *"';;;" ') (j, k, s, Z= 1, 2) 

4. 4n -periodic solutions of the second kind. Let ue consider curves y,. 
Here m = 2, n = 1, 3, 5 . . . . We represent functions 91 and cp, in (3.9) as (cf. (3.13)) 

‘pl (G, G, e,Q = Clzl + CA + Ae + B6 + 0 (al* + G* +e* + 6*) (4.1) 

%(~,~nr ~,~)=CC~~I+CI~~+A~+B~+O(~~+Z:+E~+~F) 

Coefficients A,B,&,C, were computed along curves Y4 using a special computer program. 
It appeared that along curves Ya shown in Fig.1, As+BajO the coefficient c, vanishes 
only at point PI (e z 0,985, p z 0,492), changing there its sign. 

If C,#O, then in {e,e :C,cp,(O,O,e,8)<0} Eq. (3 .lO) has two real roots 

b’ (e, S) =[-CI-lcp,(O,O, e, 6) (1 + o (i))W, b’(e, 6) = -b’(e,6) 

to which correspond k-periodic solutions of Eq.(l.l) 

zC@) (t) = z, (t) + q* [t, 0, b' (e, 61, e, 81 ZC*) (t) = z, (t) + q* It, 0, b” (e, 81, e, 81 = 63 (t + 2n) 

Curve y, is defined in the (e,e) plane by the equation q, (O,O,e,6)= 0 and is the curve 
of branching of solutions H (t) (k = 0, 1, . ..) The domains of existence of these solutions 
in theneighborhood of curves YI are indicated in Fig.1 by hatching. It can be shown /3/that 
one more curve of branching of solutions ~(3 (t) (k = 0, 1, . ..) different from v, issues from 
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PQint Pr (curve Y shown in Fig.2 which is nominal).Curves y4 and y are tangenttoeachotherin 
PointP1. The number of roots of Eq.(3.10) in the domains bounded by these curves is indicated 
by numerals in Fig.2. 

Consider now Eq. (3.14). 

G#O. 
As shown by numerical computations, along these curves vn C1 + 

In the domain {s,h: (Cl -I- Cz)cPa (O,O, E, 6)< 0) Eq. (3.14) has two real roots 

b*' (e, 6) = [-(Cl + Cz)-'Cpa (0, 0, E, 8) (1 f o (l))I'.'a, b;' (E',&) = -b*'(e, 6) 

to which correspond 4n-periodic solutions 

~z+z*'"'(t)=~+z(~) '_ s*[t. b*'(e, 6), b,'(e, 6), e, 81 

Gca)(t) =5 (t) ' !7* It, b*'(E, '$ beU(e, 6), E, S] =zz$o’(t -f 2n) 

Curve Y4 is the branching curve of these solutions. For small 68, 6 the domains of 
existence of solutions 5*ck) (k = 0, 1, . ..) lie above the Y4 curves (Fig.1). 

5. 6~ -periodic solutions of the second kind. Curves y3 and y,, cm be the 
branching curves of these solutions. The behavior of 6n-periodic solutions of Eq.(l.l) in 
the neighborhood of curves y6 is similar to that of fin-periodic solutions of the equation 
studied in /3/, which is not investigated here. 
4, 8, . . . . 

Consider curves y3 on which m = 3, I* = 2, 
Functions 'p1 and q2 in (3.9) will be represented in the form (4.1) for c1 = C, 

= C(cf.(3.15)). 
Coefficients A, B, C were computed along curves y3 shown in Fig.1, Aa + Ba> 0, co- 

efficient C vanishes only at points Pa (e- 0,590, pz 0,897) and P, (e z 0,322, p z 2.01), 
where they change their sign. The branching of roots of Eqs.(3.10) and (3.11) along curves 
73 is similar to that of roots of Eq.(3.10) oncurves 1J4 investigated in Sect.4. The domains 

of existence of Gn-periodic solutions .zck), ~('0 (k = 0, 1,. ..) in the neighborhood of y3 
curves are shown hatched in Fig.1. 

6. Numerical computations of 4~ -periodic solutions. Computed solutions of 
boundary value problems (1.4) and (1.5) with nz= 2 which for eel coincide with solutions 

(0) 
% 

(2) 1 Jt,2 and .';>,1'0), Z,,_:r) , respectively are shown in Figs.3 and 4. The dependence of initial 
conditions of these solutions on e for various values of CL, and the subdivision of the (GP) 
plane in regions containing the same number of solutions. There are k solutionsinthe region 
denoted by Et, while region E, is not indicated. The curves that delineate this subdivision 
are called branching curves. 

Let us consider solutions of problem (1.4) when m= 2 (Fig.3). The solution that sat- 
isfies the inequality S' (0) > 0 (z' (0) < 0) when e = 0 coincides with solution z$_! (z,,*(") if e<l. 

These solutions form surface &,:in the space R3(x' (O), e,10. The curves in Fig.3 can be inter- 
preted as follows. Those in the plane (e. I' (0)) represent intersections of surface St/? and 
planes p= con&. The curves in the (e.~) plane are othogonal projections on the (e,r) plane 
of curves belonging to surface S,I~ at whose points the plane tangent to S,,: is parallel to 
the 5' (0) -axis. It can be shown that surface S,lt(n= 1.3, 5... ) intersects surface S along 

the Tr curve issuing from point (0, 0, G/4). The odd -4n-periodic solutions of the second kind 
$'),I(~) described inSects.3and 4 are solutions of the boundary value problem (1.4) with m=2, 

whose initial velocities lie on surface S,,% in the neighborhood of curve r,=s,,lz ns. The 

respective curve of branching of these solutions is represented by Ya . The solutions shown 
in Fig.3 have also the branching curve y issuing from point P, (see SeCt.4). Two different 

curves lying on surface S,,. are simultaneously projected on curve :'. 
Surface Sn!* has the following properties. Let s-- X (!.a, e, PL) be a solution of Eq.cl.1) 

with initial conditions x (0, a, e, p) = 0, x- (0, a. e, pi = a . If point Qa = (at e, p) E S,p then also 
point Q1 = (X (2~. a. r. p), e, p) E S,, ?. And when also Q,Zh', then points Q0 and Q, lie on S,,, 
on the opposite sides of 5'. me of these points corresponds to the solution continued from 

(0 z,,),, and the other to that continued from ,,W ",r - BY virtue of the indicated property the 

curves on surface S,,: either coincide with r4 (on which solutions continued from (01 En,?> x$ 
merge and degenerate into 2n -periodic), or exist in pairs at points where the plane tangent 

to Sn12 is parallel to the 2' (0) -axis. The projections of such curves on the (e. 11) plane do 

not coincide. 
Let US consider solutions of the boundary value problem (1.5) with m 7: 2 (Fig.4). The 

solution that satisfies the inequality =(n/2)>0 cr(;riZ)iO) when e-=0 is the same as solution 

ij/o) (.i$f) when eel. To these solutions corresponds surface SIX' c H" (.r (n/3), e, {I). Curves Y4 

are the branching curves of solutions of the boundary value problem (1.5) with rn-2 (see 

Sects.3 and 4). Solutions represented in Fig.4 have also the branching curve B whose origin 

is unrelated to curve Y4 - The projected image of surface S,' on the (e, tL) plane has a 

singularity of the type of accumulation at points which in such mapping become point P4(r- 
0.884. u = 0,894) E .: (Fis.4 1. 
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7. Numerical computations of 6x-periodic solutions. Solutions of the bound- 
ary value problems (l-3)- (1.5) with m=3 which are the same as solutions 
5(O) 

~i~,~. .?'i (Fig. 5) , 
-Ia’ z;“j (Fig.6) , and I!/":, .z$' (Fig.7) when eel are shown in Figs.5-7. The intension of 

these figures is similar to that of Figs.3 and 4. 
Let US consider solutions of the boundary value problem (1.3) when m.= 8 (Fig.5). The 

solution that satisfies the condition z'(d)>O(+'(O)<O) when e= u is the same as solution 
2:;: (xi;!) when e<l. TO these solutions corresponds surface S,,,CR~(X'(O), e,~), and curve 
s ;i s,,a is now curve F6 issuing from point (0, 0, 1 / 9). The projected image of surface s,. 

on the (e,p) plane has at point P, (e N 1,26i, p = 0,698) (Fig.5) a singularity of the accumula-' 
tion type. 

Let us pass to the solution of problem (1.4) when n==8 (Fig.6). The solution in which 
e = 0 s' (O)> 0 (2. (0) < 0) is the same as solution 2:;) (z1$ when 
defined by surface S%,,C RS (z'(O), e, p). Surface s,,s (i = 2, 4, 8. .) 

e<1. These solutions are 
intersects surface S along 

curve 1‘, issuing from point (0, 0, nP/9). The odd Gn-periodic solutions of the second kind 
#) , x@’ described in Sects.3 and 5 are solutions of the boundary value problem (1.4) when 
m= 3 whose initial velocities lie on surface Snis in the neighborhood of curve F3= S Ti 
Sni3. The respective branching curve of these solutions is ~3. 

Surface S,,, has the following property. If X (t, a, e, p) is the function determined in 
Sect.6 and point QO = (a, e, p) E Sy.3, then also point Q1 = (-X @n, a, e, p)> e, p) E S,,;,. And, when 
in addition QoFS, then points QO and Q1 lie on &&;3 on opposite sides of S. One of 
these points corresponds to the solution continued from (0) 

%3 and the other to that continued 
from z% - By virtue of theindicatedproperty the curves on surface S,,, either coincide 
with curve I', or exist in pairs at points at which a plane tangent to S,,% is parallel 
to axis 5' (0) . One such pair projected on curve y' (Fig.6) issuing from point P, (see Sect. 

5) was found on surface S,,, . A branching curve also issuing from point P, lies to the 
left of curve ye and runs in. the direction of increasing p. However this branching curve 
and the *:3 curve are indistinguishable in the scale of Fig.6. 

Let us consider solutions of the boundary value problem (1.5) (Fig.7) when m=3. The 
solution which for e = 0 3 (n/2) >o (2 (x I2) < 0) is the same as solution Xi;; (.?!3') when e<i. 

These solutions are defined by surface S.,:CR9 @(s/Z), GIL). The projection 0: curve S'n Sng3 
on the (e,~) plane is represented by curve ya issuing from point (0, n2i9) and is the bran- 
ching curve of solution of the boundary value problem (1.5) when m = 3. 

The solutions illustrated in Fig.7 have two more branching curves, one of which joins 
points P, and P, and lies to the right of curve v3. from which it is indistiguishable in 

Fig.7. The other branching curve (curve Y in Fig.7) is similar to curve 15 in Fig.4. The 

projected image of surface S:,; on the (e. ~1) plane has a singularity of the accumulation 
type at points which become point Pg(e z 0,548, TV z 1,029). 
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